Extensions 1→N→G→Q→1 with N=C32 and Q=Dic6

Direct product G=NxQ with N=C32 and Q=Dic6
dρLabelID
C32xDic672C3^2xDic6216,135

Semidirect products G=N:Q with N=C32 and Q=Dic6
extensionφ:Q→Aut NdρLabelID
C32:Dic6 = He3:2Q8φ: Dic6/C2D6 ⊆ Aut C32726-C3^2:Dic6216,33
C32:2Dic6 = C33:Q8φ: Dic6/C3Q8 ⊆ Aut C32248C3^2:2Dic6216,161
C32:3Dic6 = He3:3Q8φ: Dic6/C4S3 ⊆ Aut C32726-C3^2:3Dic6216,49
C32:4Dic6 = He3:4Q8φ: Dic6/C4S3 ⊆ Aut C32726C3^2:4Dic6216,66
C32:5Dic6 = C33:4Q8φ: Dic6/C6C22 ⊆ Aut C3272C3^2:5Dic6216,130
C32:6Dic6 = C33:5Q8φ: Dic6/C6C22 ⊆ Aut C32244C3^2:6Dic6216,133
C32:7Dic6 = C3xC32:2Q8φ: Dic6/Dic3C2 ⊆ Aut C32244C3^2:7Dic6216,123
C32:8Dic6 = C3xC32:4Q8φ: Dic6/C12C2 ⊆ Aut C3272C3^2:8Dic6216,140
C32:9Dic6 = C33:8Q8φ: Dic6/C12C2 ⊆ Aut C32216C3^2:9Dic6216,145

Non-split extensions G=N.Q with N=C32 and Q=Dic6
extensionφ:Q→Aut NdρLabelID
C32.Dic6 = C36.C6φ: Dic6/C4S3 ⊆ Aut C32726-C3^2.Dic6216,52
C32.2Dic6 = C9:Dic6φ: Dic6/C6C22 ⊆ Aut C32724-C3^2.2Dic6216,26
C32.3Dic6 = C3xDic18φ: Dic6/C12C2 ⊆ Aut C32722C3^2.3Dic6216,43
C32.4Dic6 = C12.D9φ: Dic6/C12C2 ⊆ Aut C32216C3^2.4Dic6216,63

׿
x
:
Z
F
o
wr
Q
<